

<u>Cl</u>	JRRENT SENSING MODULE APPLICATION NOTE	2
1.	COMMUNICATION INTERFACE FORMAT	2
2.	OPERATING MODE	2
3.	MEASURING METHOD: (CONTINUOUS MODE)	2
4.	MEASURING METHOD: (MODBUS-RTU)	3
5.	APPLICATION DIAGRAM:	5
6.	WCM-LCD4X32	7
<u>AF</u>	PPLICATION EXAMPLE ON ARDUINO	9
1.	INSTRUCTIONS FOR ARDUINO	9
2.	CONTINUOUS MODE	10
	SCHEMATIC DIAGRAM	10
	WIRING DIAGRAM	11 12
		•

Current Sensing Module Application Note

1. Communication Interface Format

Interface	UART TTL
	RS232 / RS485
	(Need to connect RS232/RS485 signal converter)
Rate	9600 bps
Format	Parity bit: None , Data bit: 8 , Stop bit: 1

2. Operating Mode

(2.1)Continuous Mode: 8 Data Byte, update rate: 3 data/s, reset time: 1s (2.2)Modbus-RTU Mode: use master-slave request / response communication

3. Measuring Method: (Continuous Mode)

(3.1) DC50C (DC) / 50C (AC/DC): The residual magnetism of the sensor could affect the measurement accuracy. When first use or switching the measurement direction, it is recommended to provide the test current first, and then reset the sensor when zero current pass.

(3.2) AC50C (AC) : after power-on, the sensor will automatically reset the current value when zero current pass through the sensor. To measure the effective current, zero current value can also be forced to reset through the reset pin (RST).

(3.3)Zeroing : when there is no current flowing through the current sensor, you can use the RST pin to reset the zero value of current. The proper use of this function will make the measurement more accurate. When measuring DC current, the sensor will generate an amount of remanence. If this remanence cause reading error, please re-zero it.

4. Measuring Method: (Modbus-RTU)

50C (Modbus-RTU) : use "Reset Command" to reset current when no current passes through the sensor, after power-on.

(4.1) Read Holding Registers (Function code:03H)

☆The broadcast address (0x00) cannot execute.

(4.1.1) Current

Master request: 01 03 00 02 00 02 65 CB

Slave	Function	Start Address	No. of Pogiatora	Check Code		
Address	Code		NO. OF REGISTERS	(CRC)		
01H	03H	00H , 02H	00H , 02H	65H, CBH		

Slave response: 01 03 04 00 00 04 D2 78 AE

Slave	Function	Byte	Data	Check Code		
Address	Code	Count	Dala	(CRC)		
01H	03H	04H	00H , 00H , 04H , D2H	78H, AEH		

Result: (01) sensor number 1, (00 00 04 D2) current=1234/1000 = 1.234A

(4.1.2) Temperature

Master request: 01 03 00 04 00 02 85 CA

Slave	Function	Start Address	No. of Pogistors	Check Code	
Address	Code		NO. OF REGISTERS	(CRC)	
01H	03H	00H , 04H	00H , 02H	85H, CAH	

Slave response: 01 03 04 00 00 01 2C FA 7E

Slave	Function	Byte	Data	Check Code
Address	Code	Count	Dala	(CRC)
01H	03H	04H	00H , 00H , 01H , 2CH	FAH, 7EH

Result: (01) sensor number 1, (00 00 01 2C) temperature=300/10 = 30.0°C

(4.2) Write Holding Registers (Function code:06H)

%The broadcast address (0x00) can execute, but will not respond.

(4.2.1) Reset

Master request: 01 06 00 00 01 00 88 5A

Slave: 01 06 00 00 01 00 88 5A

Slave	Function Start Address		Data	Check Code
Address	Code	Start Address	Dala	(CRC)
01H	06H	00H , 00H	01H , 00H	88H, 5AH

Result: (01) sensor number 1, (01 00) write 256 to reset

(4.2.2) Write Address

Master request: 01 06 00 10 00 01 49 CF

Slave response: 01 06 00 10 00 01 49 CF

Slave	Function	Start Addraga	Dete	Check Code		
Address	Code	Start Address	Dala	(CRC)		
01H	06H	00H , 10H	00H, 01H	49H, CFH		

Result: (01) sensor number 1, default address 1,(00 01) write address 1

(4.3) Exception Code

(4.3.1) Function Code Exception

Master request: 01 01 00 00 00 00 3C 0A

Slave	Function	Stort Addross	No. of Pogiatora	Check Code		
Address	Code	Start Address	NO. OF REGISTERS	(CRC)		
01H	01H	00H , 00H	00H , 00H	3CH, 0AH		

Slave response: 01 81 01 81 90

Slave	Function	Execution Code	Check Code
Address	Code	Exception Code	(CRC)
01H	81H	01H	81H, 90H

Result: (01) sensor number 1, (81)=0X80(exception) + 0X01(function code),

(01) Exception Code

(4.3.2) Address Exception

Master request: 01 03 FF FF 00 04 44 2D

Slave response: 01 83 02 C0 F1

Result: (01) sensor number 1,(83)=0X80(exception) + 0X03(function code),

(02) Exception Code

(4.3.3) Data Exception

Master request: 01 03 00 00 FF FF 44 7A

Slave response: 01 83 03 01 31

Result: (01) sensor number 1, (83)=0X80(exception) + 0X03(function code),

(03) Exception Code

<u> %Restore Slave Address to Factory State (0x01)</u>

- (1) Broadcast (0x00): Set Slave Address to 0x01
 Master request: 00 06 00 10 00 01 48 1E
 Slave response: write only, not respond
- (2) Pin(INT) pull-low to reset the slave address (0x01)

5. Application Diagram:

(5.1) MCU Connection Diagram

(5.2) TTL to USB Connection Diagram

(5.3) TTL to RS485 Connection Diagram

(5.4) Modbus-RTU Communication Diagram

6. WCM-LCD4X32

This is a LCD module applied this current module

Pad No	Pad Name	I/O	Description	
1	VDD	-	The positive power input pin	
2	GND	-	The system ground	
3	х	-	Reserve	
4	х	-	Reserve	
5	СК	I/O		
6	DA	I/O	System programming, reserve	
7	х	-	Reserve	
0	DV	0	The data of measured current output. Its output is UART	
8	КХ	0	communication. The baud rate is 9.6K bits/sec.	

(6.1) Pad Description

(6.2) LCM-LCD4X32 Application Diagram

(6.3) Package: (Units: mm)

L x W x H = 23mm x 28mm x 8mm

Application Example on Arduino

1. Instructions for Arduino

(1.1) Check the type of board is correct.

(1.2) Check the port of Arduino is connected and selected correctly.

2. Continuous Mode

(2.1) Schematic Diagram

(2.2) Wiring Diagram

(2.3) Software & Program

(2.3.1) Code can be download at: http://www.winson.com.tw/Product/156

****CAUTION!!** To prevent upload failure of Arduino, please insert WCM after upload process.

(2.3.2) Upload the example code and open Serial Monitor to display the

measured current.		
WCM_Normal_Example_Arduino Arduino 1.8.16	- 🗆	\times
楢案 編輯 草稿碼 工具 説明		
		2
WCM_Normal_Example_Arduino		^
WCM example		
1 When new serial data arrives t	hia	sk
i mien new seriar data arrives, e	IIID	
© COM4 —		X
~ 0.000		傳送
		1
*		
~0.000		
~0.000		
~0.000		
V~0_000		
~0.000		
~0.040		
~0.040		
		.
		>
CR(carriage return) ~ 9600 baud	Clear of	butput
<pre>digitalWrite(2, HIGH);</pre>		
delay(1000);		
Reset();		
}		
void loop()		~
		>
早间际世用」 0302 Dytes (19%) 时任以前1	子 []	∃]°_^